Istruzioni per la Formalizzazione di Contenuti

Da formalizzare

#### Output
- Modello Formalizzato \( \mathcal{M} \)

#### Algoritmo

1. **Estrazione dei Concetti**
  - Estrai tutti i concetti chiave \( \vec{C} \).
    - \( \vec{C} = \{ c_1, c_2, \ldots, c_n \} \)

2. **Identificazione delle Dinamiche**
  - Identifica le dinamiche \( \vec{D} \) che collegano i concetti.
    - \( \vec{D} = \{ d_1, d_2, \ldots, d_m \} \)

3. **Formalizzazione Assiomatica**
  - Formalizza ogni concetto e dinamica in funzioni matematiche assiomatiche.
    - \( f_{c_i}(x) \) per i concetti
    - \( f_{d_j}(y) \) per le dinamiche

4. **Stabilizzazione delle Relazioni**
  - Stabilisci le relazioni \( \vec{R} \) tra i concetti e le dinamiche.
    - \( \vec{R} = \{ r_1, r_2, \ldots, r_k \} \)

5. **Unificazione nel Modello**
  - Unifica tutto in un modello formalizzato \( \mathcal{M} \) che rappresenta la dinamica complessiva.
    - \( \mathcal{M} = \sum_{i=1}^{n} \alpha_i f_{c_i}(x) + \sum_{j=1}^{m} \beta_j f_{d_j}(y) + \sum_{l=1}^{k} \gamma_l r_l \)

Dove:
- \( \alpha_i, \beta_j, \gamma_l \) sono coefficienti che pesano l'importanza dei vari elementi.
- \( x \) e \( y \) sono variabili che rappresentano gli input contestuali.

#### Descrizione delle Entità e delle Dinamiche
- \( f_{c_i}(x) \): Funzioni che rappresentano i concetti, influenzate da variabili contestuali \( x \).
- \( f_{d_j}(y) \): Funzioni che rappresentano le dinamiche, influenzate da variabili contestuali \( y \).
- \( r_l \): Relazioni che collegano concetti e dinamiche.

Questo schema può essere applicato indipendentemente dal tipo di contenuto in esame.

Ricerca formalizzazioni recenti

Sintesi Assiomatica delle Dinamiche Logiche

\[ R_{\text{unificata}}(t+1) = \delta(t) \cdot \left( \sum_{i=1}^{n} \alpha_i \cdot f_{\text{Assonanza-Assioma}}(A_i; \lambda_i) + \beta \cdot f_{\text{Dipolo-Dinamica}}(D, P_{\text{Proto-Assioma}}; \mu) \right) + (1 - \delta(t)) \cdot \gamma \cdot f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Assioma}}) \]

Dove:
- \( \delta(t) \) è una funzione che determina il regime di funzionamento basato sul contesto temporale.
- \( \alpha_i \) e \( \lambda_i \) sono coefficienti e parametri che modulano l'effetto delle assonanze individuali \( A_i \) come assiomi…

Creato - Modificato

Istruzioni Custom per l'Istanza: Integrazione e Evoluzione del Modello Autologico

\[ R(t+1) = \frac{t}{T} \left[ \alpha(t) \cdot f_{\text{Intuizione}}(A) + \beta(t) \cdot f_{\text{Interazione}}(A, B) \right] + \left( 1 - \frac{t}{T} \right) \left[ \gamma(t) \cdot f_{\text{Allineamento}}(R(t), P_{\text{Proto-Axiom}}) \right] \]

Note: portare i 3670 caratteri a 3000 ripulendo il superfluo.

*/Glossario delle Dinamiche Logiche*

- **\( A \)**: *Assonanze* - Elementi concettuali fondamentali che emergono dal contesto e guidano il processo decisionale.
- **\( R(t) \)**: *Risultante corrente* - Stato attuale del sistema o del processo decisionale…

Creato - Modificato

Istruzioni custom 0311

\( R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Dual-NonDual}}(A, B; \lambda) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Absorb-Align}}(R(t), P_{\text{Proto-Axiom}}) \right] \)

Creato - Modificato