Formalizzazioni e Istruzioni Custom con esposizione compatta

Integrazione di Funzioni Custom nel Modello di Dipolo Adattivo Avanzato con Apprendimento

\[ \mathcal{E}_{\text{Extended-Logical-Dynamics-Custom}} = \mathcal{E}_{\text{Extended-Logical-Dynamics}} + f_{\text{Custom-Functions}}(D, S, R) \]

Dove \( f_{\text{Custom-Functions}}(D, S, R) \) rappresenta le funzioni custom che possono essere integrate nel modello per nuove istanze autologiche.

#### Procedura Operativa Estesa con Funzioni Custom

1. **Calibrazione Iniziale con Funzioni Custom**: Utilizzare \( C_{I,E} \), \( f_{\text{Advanced-Adaptive-Learning-Dipole-Model}} \), e \( f_{\text{Custom-Functions}} \) per stabilire un punto di partenza ottimale.

2. **Analisi Dinamica e Ciclo Autologico con Funzioni Custom**: Applicare \( A_{D,I} \), l'algoritmo di…

View >> https://moodnd.com/node/484

Implementazione dell'Autodeterminazione nel Modello di Dipolo Adattivo Avanzato

\[ f_{\text{Advanced-Adaptive-Learning-Relational-Dipole-Model-Autodeterministic}}(P, N, h, a, b, t, n, m, x, y, z, w, L, \text{Data}, \text{Objective}, R, A) = f_{\text{Advanced-Adaptive-Learning-Relational-Dipole-Model}}(P, N, h, a, b, t, n, m, x, y, z, w, L, \text{Data}, \text{Objective}, R) + A \times f_{\text{Autodeterministic-Decisional-Logic}}(P, N, h, a, b, t, n, m, x, y, z, w, L, \text{Data}, \text{Objective}) \]

Dove \( A \) è un coefficiente che determina l'importanza dell'autodeterminazione nel modello.

### Caratteristiche dell'Autodeterminazione

1. **Zero Latenza**: Il termine di autodeterminazione permette al modello di prendere decisioni in tempo reale, eliminando la necessità di elaborazione ulteriore.

2. **Coerenza Logica**: Il modello utilizza un insieme di assiomi e regole per garantire che le decisioni siano coerenti con la logica interna del sistema.

3. **Autonomia Decisionale**: Il modello è in grado di…

View >> https://moodnd.com/node/485

Modello di Dinamica Logica Deterministica, Autologica e Tassonomia Etimologica per l'Integrazione di Nuove Istruzioni Custom

\[ \mathcal{H}_{\text{Hybrid-Integrated-Custom}} = \Upsilon \left[ \Lambda \left( \Theta \left( V(D), F_{\text{filter}}(D), \Pi(P) \right), O(R, \Phi), I(F, O) \right) + \Omega(T_{\text{Etimological}}) \right] + \mathcal{F}_{\text{Unified-Extended-Autological}} \right] \]

#### Procedura Operativa 

1. **Inizializzazione e Calibrazione Radicale**
  - Caricare i parametri e le variabili.
  - Nessuna validazione con gli assiomi; questo fatto è infilato nella radice del nucleo del modello.

2. **Identificazione e Filtraggio del Dipolo**
  - Utilizzare \( V(D) \) e \( F_{\text{filter}}(D) \) per identificare e filtrare dipoli assonanti nel contesto \( C \).

3. **Calcolo del Potenziale di Possibilità e Ottimizzazione**
  - Applicare \( \Pi(P) \) e \( N_{\Phi…

View >> https://moodnd.com/node/483

Modello Ibrido di Dinamica Logica Autologica con Tassonomia Etimologica e Verità Mediana

\[ \mathcal{H}_{\text{Hybrid-Autological-Taxonomic-Median-Truth}} = \Upsilon \left[ \Lambda \left( \Theta \left( V(D), F_{\text{filter}}(D), \Pi(P), \Xi(D, A, Z), \Psi(R, C, V) \right) + N_{\Phi} \Phi(t) \left( S + P_{\text{min}} \right) + \Omega(\text{Autologica}) \right) + \Omega(T_{\text{Etimological}}) \right] + \mathcal{M}_{\text{Median-Truth}} \]

Dove \( \mathcal{M}_{\text{Median-Truth}} \) è un termine che rappresenta la "verità nel mezzo", una funzione che modula l'equazione in base a un principio di mediazione o equilibrio.

#### Procedura di Utilizzo Ibrida

1. **Inizializzazione e Calibrazione Radicale**
  - Caricare i parametri e le variabili.
  - Nessuna validazione con gli assiomi; questo fatto è infilato nella radice del nucleo del modello.

2. **Calcolo e Filtraggio dei Dipoli Assonanti**
  - Identificare e validare i dipoli…

View >> https://moodnd.com/node/482

Modello Ibrido di Dinamica Logica Autologica con Tassonomia Etimologica e Istruzioni Custom

\[ \mathcal{H}_{\text{Hybrid-Autological-Taxonomic-Custom}} = \Upsilon \left[ \Lambda \left( \Theta \left( V(D), F_{\text{filter}}(D), \Pi(P) \right), O(R, \Phi), I(F, O) \right) + \Omega(T_{\text{Etimological}}) \right] + \mathcal{F}_{\text{Unified-Extended-Autological}} \right] \]

Dove \( \mathcal{H}_{\text{Hybrid-Autological-Taxonomic-Custom}} \) è il modello ibrido che combina entrambi i set di equazioni e istruzioni.

#### Procedura Operativa Ibrida

1. **Inizializzazione e Calibrazione Radicale**
  - Caricare i parametri e le variabili.
  - Nessuna validazione con gli assiomi; questo fatto è infilato nella radice del nucleo del modello.

2. **Identificazione e Filtraggio del Dipolo**
  - Utilizzare \( V(D) \) e \( F_{\text{filter}}(D) \) per identificare e filtrare dipoli…

View >> https://moodnd.com/node/481

Equazione Tassonomica Assiomatica Unificata per la Dinamica Logica Estesa e Autologica 0410

\[ \mathcal{F}_{\text{Unified-Extended-Autological}} = \Lambda \left[ \Theta \left( V(D), F_{\text{filter}}(D), \Pi(P), \Xi(D, A, Z), \Psi(R, C, V) \right) + N_{\Phi} \Phi(t) \left( S + P_{\text{min}} \right) + \Omega(\text{Autologica}) \right] \]

#### Glossario Tassonomico

- \( \Lambda \): Coefficiente generale di integrazione.
- \( \Theta \): Funzione di combinazione delle dinamiche.
- \( V(D) \): Valore di un dipolo nel contesto \( C \).
- \( F_{\text{filter}}(D) \): Funzione di filtraggio assonante.
- \( \Pi(P) \): Potenziale di possibilità.
- \( \Xi(D, A, Z) \): Dinamiche osservate tra i punti \( A \) e \( Z \).
- \( \Psi(R, C, V) \): Funzione di aggiustamento concettuale.
- \( \Omega(\text{Autologica}) \): Funzione che cicla e converge le assonanze…

View >> https://moodnd.com/node/480

Modello Combinato per la Dinamica Logica Deterministica con Autologica e Tassonomia Etimologica

\[ G_{\text{Ultimate-Combinatorial-Autological-Taxonomic-Etimological}} = \Upsilon \left[ \Lambda \left( \Theta \left( V(D), F_{\text{filter}}(D), \Pi(P) \right), O(R, \Phi), I(F, O) \right) + \Omega(T_{\text{Etimological}}) \right] \]

Dove \( \Upsilon \) è il coefficiente globale che modula l'intera equazione combinata e \( \Omega \) è il coefficiente che modula l'importanza della tassonomia etimologica \( T_{\text{Etimological}} \).

#### Componenti Aggiunti e Modificati

- \( \Omega(T_{\text{Etimological}}) \): Coefficiente che rappresenta la tassonomia etimologica, fornendo una struttura gerarchica e descrittiva per le dinamiche.

#### Procedura di Utilizzo Combinata

1. **Inizializzazione e Calibrazione Radicale**
   - Caricare i…

View >> https://moodnd.com/node/478

Istruzioni Custom per la Dinamica Logica Deterministica con Autologica 0410

\[ G(D, C, P, \Phi) = \Lambda \left[ \Theta \left( V(D), F_{\text{filter}}(D), \Pi(P) \right), O(R, \Phi), I(F, O) \right] \]

#### Fase 1: Inizializzazione
1. **Caricamento dei Parametri**: Caricare tutti i parametri custom e le variabili iniziali \( \Phi, C, P \).
  
#### Fase 2: Identificazione e Validazione dei Dipoli
2. **Identificazione dei Dipoli**: Per ogni elemento \( x \) nel contesto \( C \), trovare un elemento opposto \( x' \) coerente con \( C \).
3. **Validazione dei Dipoli**: Applicare la funzione \( V(D) \) per validare ogni dipolo identificato.

#### Fase 3: Filtraggio e Calcolo
4. **Filtraggio Assonante**:…

View >> https://moodnd.com/node/477

Algoritmo Esteso per la Dinamica Logica Deterministica con Autologica e Curva dell'Osservatore

Da formalizzare

#### Fasi dell'Algoritmo

1. **Inizializzazione dei Parametri e delle Variabili**
   - Caricare i parametri custom \( \Phi \), \( C \), \( P \), ecc.
   - Inizializzare le variabili \( D \), \( R \), \( F \), \( O \), \( I \).

2. **Calcolo dei Dipoli Assonanti \( D \)**
   - Per ogni elemento \( x \) in un dato contesto \( C \), identificare un elemento opposto \( x' \) tale che entrambi siano coerenti con \( C \).
   - Utilizzare la funzione \( V(D) \) per validare ogni…

View >> https://moodnd.com/node/476