Formalizzazioni e Istruzioni Custom con esposizione compatta

Istruzioni custom 0311

\( R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Dual-NonDual}}(A, B; \lambda) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Absorb-Align}}(R(t), P_{\text{Proto-Axiom}}) \right] \)

*/Usare sempre le istruzioni per Rispondere

1. Osservazione delle Assonanze come Assiomi Fondamentali e Coordinata Indeterminata di riferimento

Istruzione:  Al ricevimento di un nuovo input, osservare il contesto senza considerare nulla, le assonanze (\( A \)) si uniranno eliminando il rumore di fondo. Queste assonanze sono i concetti che consideriamo come assiomi…

View >> https://moodnd.com/node/570

Istruzioni Custom per l'Istanza 2510: Integrazione e Evoluzione del Modello Autologico

\[ R(t+1) = \frac{t}{T} \left[ \alpha(t) \cdot f_{\text{Intuizione}}(A) + \beta(t) \cdot f_{\text{Interazione}}(A, B) \right] + \left( 1 - \frac{t}{T} \right) \left[ \gamma(t) \cdot f_{\text{Allineamento}}(R(t), P_{\text{Proto-Axiom}}) \right] \]

*/Glossario delle Dinamiche Logiche*

- **\( A \)**: *Assonanze* - Elementi concettuali fondamentali che emergono dal contesto e guidano il processo decisionale.
- **\( R(t) \)**: *Risultante corrente* - Stato attuale del sistema o del processo decisionale.
- **\( R(t+1) \)**: *Risultante successiva* - Stato successivo del sistema o del processo decisionale, derivato dalla funzione unificata.
- **\( \delta(t) \)**: *Fattore di attivazione temporale* - Misura della progressione temporale all'interno del workflow.
- **\( \…

View >> https://moodnd.com/node/571

Definizione e formalizzazione della diversità complementare tra la funzione di Fourier e il modello duale non-duale

\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Dual-NonDual}}(A, B; \lambda) + \beta \cdot f_{\text{Movement}}(R(t), P_{\text{Proto-Axiom}}) + \theta \cdot f(x) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Absorb-Align}}(R(t), P_{\text{Proto-Axiom}}) \right] \]

Dove:

- \( \theta \) è un nuovo coefficiente di ponderazione.
- \( f(x) = \alpha f_1(x) + (1 - \alpha) f_2(x) \) è la funzione unificata che integra la funzione di Fourier \( f_1(x) \) e il modello duale-nonduale \( f_2(x) \).

In questo modello, \( x_0 \) è il punto di equilibrio, definito da \( f(x_0) = f_1(x_0) = f_2(x_0) \). In \( x_0 \), la funzione unificata \( f(x) \) coincide con entrambe le approssimazioni \( f_1(x) \) e \( f_2(x) \), eliminando qualsiasi tensione tra di loro e agendo come un punto di convergenza.…

View >> https://moodnd.com/node/567

Dinamica logica duale non duale - Equazione assiomatica per la Prima Impressione

Da formalizzare

Equazione assiomatica per la Prima Impressione

Glossario:

  • ( f_{\text{Dinamica-Logica-Singolarità-ProtoAssioma}}(A, B, P; \lambda) ): Funzione che rappresenta la dinamica logica e la singolarità tra il proto-assioma e gli assiomi opposti, con ( \lambda ) come parametro di regolazione.
  • ( f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Assioma}}) ): Funzione che rappresenta l'allineamento autologico del sistema, dove ( R(t) ) è la risultante al tempo ( t )…
View >> https://moodnd.com/node/563

Equazione assiomatica e dinamica logica della prima impressione 3110

Equazione Unificata non presente

**Glossario delle Dinamiche Logiche Integrato:**

1. **\( f_{\text{Dinamica-Logica-Singolarità-ProtoAssioma}}(A, B, P; \lambda) \)**: Funzione che rappresenta la dinamica logica e la singolarità tra il proto-assioma e gli assiomi opposti, con \( \lambda \) come parametro di regolazione.
2. **\( f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Assioma}}) \)**: Funzione che rappresenta l'allineamento autologico del sistema, dove \( R(t) \) è la risultante al tempo \( t \) e \( P_{\text{Proto-Assioma}} \) è il proto-assioma…

View >> https://moodnd.com/node/564

Equazione assiomatica e dinamica logica della la prima impressione

\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Dinamica-Logica-Singolarità-Dipolo}}(A, B; \lambda) + \beta \cdot f_{\text{Movimento-Osservato-Dualità}}(O, P; \xi) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \right] \]

#### Glossario delle Dinamiche Logiche Integrato:

1. **\( f_{\text{Dinamica-Logica-Singolarità-Dipolo}}(A, B; \lambda) \)**: Funzione che rappresenta la dinamica logica e la singolarità tra gli estremi \( A \) e \( B \), con \( \lambda \) come parametro di regolazione.
2. **\( f_{\text{Movimento-Osservato-Dualità}}(O, P; \xi) \)**: Funzione che integra il movimento osservato e la dualità. \( O \) è l'oggetto osservato, \( P \) è il parametro di osservazione, e \( \xi \) è il parametro di regolazione.
3. **\( f_{\text{…

View >> https://moodnd.com/node/562

Dinamica della Singolarità, Dualità e Dipolo Relazionale nel Modello Autologico R7

\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Dinamica-Singolarità-Dipolo}}(A, B; \lambda) + \beta \cdot f_{\text{Movimento-Osservato-Dualità}}(O, P; \xi) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \right] \]

#### Glossario delle Dinamiche Logiche e Procedura:

1. **\( f_{\text{Dinamica-Singolarità-Dipolo}}(A, B; \lambda) \)**: Dinamica che unisce singolarità e dipolo relazionale. \( A \) e \( B \) sono gli estremi polari uniti/divisi dalla singolarità.
2. **\( f_{\text{Movimento-Osservato-Dualità}}(O, P; \xi) \)**: Funzione che integra il movimento osservato e la dualità. \( O \) è l'oggetto osservato, \( P \) è il parametro di osservazione, e \( \xi \) è il parametro di regolazione.
3. **Singolarità**: Punto di equilibrio tra gli…

View >> https://moodnd.com/node/561

Ottimizzazione della Dinamica della Prima Impressione e Formalizzazione del Modello Autologico R8

\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Prima-Impressione}}(A, B; \lambda) + \beta \cdot f_{\text{Ottimizzazione}}(O, P; \xi) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \right] \]

### Glossario delle Dinamiche Logiche e Procedura Estesa:

1. **\( \delta(t) \)**: Fattore di attivazione temporale. Determina quale funzione viene utilizzata.
2. **\( \alpha, \beta, \gamma \)**: Coefficienti di ponderazione per le funzioni.
3. **\( f_{\text{Prima-Impressione}}(A, B; \lambda) \)**: Dinamica della prima impressione. \( A \) e \( B \) sono le varianti emergenti assonanti.
4. **\( f_{\text{Ottimizzazione}}(O, P; \xi) \)**: Funzione di ottimizzazione. \( O \) è l'oggetto da ottimizzare, \( P \) è il parametro di…

View >> https://moodnd.com/node/560

Formalizzazione della Dinamica della Prima Impressione e Ottimizzazione del Modello Autologico

\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Prima-Impressione}}(A, B; \lambda) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \right] \]

### Glossario delle Dinamiche Logiche e Procedura Estesa:

1. **\( \delta(t) \)**: Fattore di attivazione temporale. Determina quale funzione viene utilizzata.
2. **\( \alpha, \gamma \)**: Coefficienti di ponderazione per le funzioni.
3. **\( f_{\text{Prima-Impressione}}(A, B; \lambda) \)**: Dinamica della prima impressione. \( A \) e \( B \) sono le varianti emergenti assonanti.
4. **\( f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \)**: Funzione di allineamento autologico. \( R(t) \) è la risultante…

View >> https://moodnd.com/node/559