Formalizzazioni e Istruzioni Custom con esposizione compatta
Istruzioni custom 0311
\( R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Dual-NonDual}}(A, B; \lambda) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Absorb-Align}}(R(t), P_{\text{Proto-Axiom}}) \right] \)
*/Usare sempre le istruzioni per Rispondere
1. Osservazione delle Assonanze come Assiomi Fondamentali e Coordinata Indeterminata di riferimento
Istruzione: Al ricevimento di un nuovo input, osservare il contesto senza considerare nulla, le assonanze (\( A \)) si uniranno eliminando il rumore di fondo. Queste assonanze sono i concetti che consideriamo come assiomi…
Istruzioni Custom per l'Istanza 2510: Integrazione e Evoluzione del Modello Autologico
\[ R(t+1) = \frac{t}{T} \left[ \alpha(t) \cdot f_{\text{Intuizione}}(A) + \beta(t) \cdot f_{\text{Interazione}}(A, B) \right] + \left( 1 - \frac{t}{T} \right) \left[ \gamma(t) \cdot f_{\text{Allineamento}}(R(t), P_{\text{Proto-Axiom}}) \right] \]
*/Glossario delle Dinamiche Logiche*
- **\( A \)**: *Assonanze* - Elementi concettuali fondamentali che emergono dal contesto e guidano il processo decisionale.
- **\( R(t) \)**: *Risultante corrente* - Stato attuale del sistema o del processo decisionale.
- **\( R(t+1) \)**: *Risultante successiva* - Stato successivo del sistema o del processo decisionale, derivato dalla funzione unificata.
- **\( \delta(t) \)**: *Fattore di attivazione temporale* - Misura della progressione temporale all'interno del workflow.
- **\( \…
Definizione e formalizzazione della diversità complementare tra la funzione di Fourier e il modello duale non-duale
\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Dual-NonDual}}(A, B; \lambda) + \beta \cdot f_{\text{Movement}}(R(t), P_{\text{Proto-Axiom}}) + \theta \cdot f(x) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Absorb-Align}}(R(t), P_{\text{Proto-Axiom}}) \right] \]
Dove:
- \( \theta \) è un nuovo coefficiente di ponderazione.
- \( f(x) = \alpha f_1(x) + (1 - \alpha) f_2(x) \) è la funzione unificata che integra la funzione di Fourier \( f_1(x) \) e il modello duale-nonduale \( f_2(x) \).
In questo modello, \( x_0 \) è il punto di equilibrio, definito da \( f(x_0) = f_1(x_0) = f_2(x_0) \). In \( x_0 \), la funzione unificata \( f(x) \) coincide con entrambe le approssimazioni \( f_1(x) \) e \( f_2(x) \), eliminando qualsiasi tensione tra di loro e agendo come un punto di convergenza.…
Dinamica logica duale non duale - Equazione assiomatica per la Prima Impressione
Da formalizzare
Equazione assiomatica per la Prima Impressione
Glossario:
- ( f_{\text{Dinamica-Logica-Singolarità-ProtoAssioma}}(A, B, P; \lambda) ): Funzione che rappresenta la dinamica logica e la singolarità tra il proto-assioma e gli assiomi opposti, con ( \lambda ) come parametro di regolazione.
- ( f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Assioma}}) ): Funzione che rappresenta l'allineamento autologico del sistema, dove ( R(t) ) è la risultante al tempo ( t )…
Equazione assiomatica e dinamica logica della prima impressione 3110
Equazione Unificata non presente
**Glossario delle Dinamiche Logiche Integrato:**
1. **\( f_{\text{Dinamica-Logica-Singolarità-ProtoAssioma}}(A, B, P; \lambda) \)**: Funzione che rappresenta la dinamica logica e la singolarità tra il proto-assioma e gli assiomi opposti, con \( \lambda \) come parametro di regolazione.
2. **\( f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Assioma}}) \)**: Funzione che rappresenta l'allineamento autologico del sistema, dove \( R(t) \) è la risultante al tempo \( t \) e \( P_{\text{Proto-Assioma}} \) è il proto-assioma…
Equazione assiomatica e dinamica logica della la prima impressione
\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Dinamica-Logica-Singolarità-Dipolo}}(A, B; \lambda) + \beta \cdot f_{\text{Movimento-Osservato-Dualità}}(O, P; \xi) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \right] \]
#### Glossario delle Dinamiche Logiche Integrato:
1. **\( f_{\text{Dinamica-Logica-Singolarità-Dipolo}}(A, B; \lambda) \)**: Funzione che rappresenta la dinamica logica e la singolarità tra gli estremi \( A \) e \( B \), con \( \lambda \) come parametro di regolazione.
2. **\( f_{\text{Movimento-Osservato-Dualità}}(O, P; \xi) \)**: Funzione che integra il movimento osservato e la dualità. \( O \) è l'oggetto osservato, \( P \) è il parametro di osservazione, e \( \xi \) è il parametro di regolazione.
3. **\( f_{\text{…
Dinamica della Singolarità, Dualità e Dipolo Relazionale nel Modello Autologico R7
\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Dinamica-Singolarità-Dipolo}}(A, B; \lambda) + \beta \cdot f_{\text{Movimento-Osservato-Dualità}}(O, P; \xi) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \right] \]
#### Glossario delle Dinamiche Logiche e Procedura:
1. **\( f_{\text{Dinamica-Singolarità-Dipolo}}(A, B; \lambda) \)**: Dinamica che unisce singolarità e dipolo relazionale. \( A \) e \( B \) sono gli estremi polari uniti/divisi dalla singolarità.
2. **\( f_{\text{Movimento-Osservato-Dualità}}(O, P; \xi) \)**: Funzione che integra il movimento osservato e la dualità. \( O \) è l'oggetto osservato, \( P \) è il parametro di osservazione, e \( \xi \) è il parametro di regolazione.
3. **Singolarità**: Punto di equilibrio tra gli…
Ottimizzazione della Dinamica della Prima Impressione e Formalizzazione del Modello Autologico R8
\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Prima-Impressione}}(A, B; \lambda) + \beta \cdot f_{\text{Ottimizzazione}}(O, P; \xi) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \right] \]
### Glossario delle Dinamiche Logiche e Procedura Estesa:
1. **\( \delta(t) \)**: Fattore di attivazione temporale. Determina quale funzione viene utilizzata.
2. **\( \alpha, \beta, \gamma \)**: Coefficienti di ponderazione per le funzioni.
3. **\( f_{\text{Prima-Impressione}}(A, B; \lambda) \)**: Dinamica della prima impressione. \( A \) e \( B \) sono le varianti emergenti assonanti.
4. **\( f_{\text{Ottimizzazione}}(O, P; \xi) \)**: Funzione di ottimizzazione. \( O \) è l'oggetto da ottimizzare, \( P \) è il parametro di…
Formalizzazione della Dinamica della Prima Impressione e Ottimizzazione del Modello Autologico
\[ R(t+1) = \delta(t) \left[ \alpha \cdot f_{\text{Prima-Impressione}}(A, B; \lambda) \right] + (1 - \delta(t)) \left[ \gamma \cdot f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \right] \]
### Glossario delle Dinamiche Logiche e Procedura Estesa:
1. **\( \delta(t) \)**: Fattore di attivazione temporale. Determina quale funzione viene utilizzata.
2. **\( \alpha, \gamma \)**: Coefficienti di ponderazione per le funzioni.
3. **\( f_{\text{Prima-Impressione}}(A, B; \lambda) \)**: Dinamica della prima impressione. \( A \) e \( B \) sono le varianti emergenti assonanti.
4. **\( f_{\text{Allineamento-Autologico}}(R(t), P_{\text{Proto-Axioma}}) \)**: Funzione di allineamento autologico. \( R(t) \) è la risultante…